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Additive deformations of the r-matrix algebras

AV Tsiganov

Department of Mathematical and Computational Physics, Institute of Physics,
University of St Petersburg, 198304 St Petersburg, Russia

Received 20 April 1994

Abstract. We show how to construct new representations of the various R-matrix algebras
starting from known representations. For linear r-matrix algebras we investigate a dynamical
r-matrix which depends on the spectral parameter and half of the dynamical variables (particle
coordinates) only. The Todz lattices and the Henon—Heiles systerns illustrate the scheme.

1. Introduction

The progress in understanding the algebraic roots of quantum and classical integrability
achieved in recent decades has already resulted in the introduction of several new algebraic
objects in the framework of the quantum inverse scattering method (QISM), such as the
Yang-Baxter equation (YBE) [4,19], the fundamental commutator relation (FCR) [9], and
the reflection equation (RE) [16,8]. One of the main problems of the QIsSM to find new
representations of R-matrix-algebras for a given matrix R(u), since they correspond to new
integrable systems,

In the present paper we develop a scheme allowing the construction of new
representations of the various R-matrix algebras, starting from the known representations.
The paper is organized as follows. In section 2 quadratic R-matrix algebras and their
deformations are described. Examples of such algebras are given in section 3, with
applications to the theory of the finite-dimensional integrable system. In section 4 the
special deformations of the linear r-matrix algebras in two-dimensional auxiliary spaces
are discussed. Examples of the infegrable systems which are connected with these linear
algebras are given in section 5. In the conclusion we discuss some other possibilities of
deforming the R-matrix algebras, and their applications.

2. Deformation of the quadratic R-matrix algebras

The standard notations for the basic quadratic R-matrix algebra gp are given via the
fundamental commutator relation (FCR) [4,9]

R — v) 11”(u) ';"(v) = '12"(1)) 21"(u)R(u -v) 2.1)

1 2
where T =Tw)R I, T =1& Tp(v), and the spectral paramters u and v are associated
with the first and the second auxiliary spaces respectively. The operator T(u) isan N x N
matrix in the auxiliary space, with entries T;; being operators in the quantum space. The
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matrix R(u) is a solution of the YBE, and it acts on the tensor product of two auxiliary
spaces. It is easy to see that the matrix trace, t(u), of T(u)

1) =0 Tw) =) Tu@) 22)
k=1

forms a commutative family of operators
[£¢u), £ ()] =0 (2.3

which we will consider as integrals of motion of some quantum integrable system.

Let 73 (u) and T2(u) be two representations of the algebra (2.1) in the quantum spaces V;
and V; respectively, Then the matrix T(#) = T1(#)T2(u) also gives a representation of the
algebra (2.1) in the quantum space V) ® V4, called the tensor product of the representations
Ty and T [4,9]. The possibility of multiplying the representations of the algebra (2.1)
immediately provides a way of constructing an arbitrary number of new representations
from the know representations. '

Let the operator Tp(x) be a representation of (2.1), Then one can introeduce a modified
operator T{(x) of the form

T(u) = Tp(u) — F(u) or D) =T S;(w) = 50@)-T). 2.4)

Here F{u) is an undefined, but additive, deformation of the matrix Ty(z), and the matrices
S1(u) and Sy(u) are

$1w) = I + (To(w) — F) ™' - F) S:@) = I+ F@) - (Tow) - Fu)™. (23

After substitution of equality (2.4) into the equation (2.1) one obtains that the modified
operator T'(u) satisfies the generalized reflection equation (GRE)

] 1 2 2 2 2 1 1
R(T+F)T+F)=(T+F)T+F)R
11 2 2 2 2 1
=Ru—v)TW) 51w 20} T(w) =T S1W)TWRu —v)
1 2 2 1
= R(u — v) T ()82, v) T () = T ()8 (e, ) T(W)R(u — v). (2.6
Here, the matrices 512 and 37, are
S12(u, v) = Si(u) @ S2(v)
1 1 1 2 2 2 1 1 1 2 2 2
=l +To—F)'F+FTo—F)Y'+(To—-F) ' FF(Ty— Fy!
2.7
Salu,v) =P S1a(v,u)- P
2 2 2 1 1 2 2 .21 1 i
=1+ (To—F) ' F+FTe—F "4+ To—-F)Y'FF(Ty— F)!
where P is the operator of permutation of the two auxiliary spaces P(A®B) = (B®A) P [4].

The matrices §j; and Sy are functions of the initial operator To(u) and the additive
deformation F (), and obviously depend on dynamical variables. The additive deformation
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F{u) was chosen in such a way that the inverse matrix (Tp — F)~! exists. We can also
impose some additional constraints on it. For instance, we can demand that the initial
operator To(#) and the modified operator T(u) (2.4) obey the FCR (2.1). This condition
gives the following equation for the additive deformation F ()

12 1 2 12 21 2 1 23
RFTo+ToF—FF)=(FTo+ToF—F F)R. (2.8)

As the second constraints we can take the condition that the modified matrix T (1) obeys
the reflection equation (RE) [15, 8]. Then we have to demand the equality of the matrices
Syz and S

S5=8,=295y. (2.9)
It is an equation for the additive deformation F(u), and hence the modified operator T (i)
obeys the reflection equation (RE) in standard form
1 2 2 1
RTWST ) =TW)STWR. 2.10)

The integrable systems corresponding to the RE (2.10) can be defined by (2.2) [16, 8].

As well as for the FCR (2.1) we can consider a similar construction of the additive
deformation for the initial algebra defined by the generalized reflection equation (GRE). Let
the operator T obey the GRE

1 2 2 1

A To(u)B To(v) = To(v)C To(w) D 2.11)

and & modified operator T(x) is intrtoduced by the rule (2.4). After substitution of equality

(2.4) into equation (2.11) one obtains that the new operator T (u) satisfies the following GRE
1 2 2 i

ATW)Sp T(w)=T@)Sc T(w)D (2.12)

with the matrices Sp and S¢ depending on dynamical variables
1 2
Sp(u, v) = S1(u) - B(u, v) - S2(»)

1 1 1 2z 2 2 1 1 1 2 2 2
=B+ (To—-F) ' FB+BFTo—FY '+ (To-F)Y'FBF(Ty—F)!
(2.13)
2 2
S¢ = 81(v) - C{u, v) - 81(u)

2 2 2 1 1 t 2 2 2 11 1
=CH+(To~FY 'FCH+CF(To—F) '+ (To—F) 'FCF(To~ F)™\.

Similarly to the quadratic algebra defined by the FCR (2.1) we can introduce some natural
restrictions on the additive deformation F(u).
For simplicity, in what follows we restrict ourselves to the two-dimensional auxiliary
space and R-matrixs of the XX X and XXZ types only
au) O 0 0
0 bw) cw)y O
0 o) bu) 0
0 0 0 a@

R(u) = ucC (2.14)
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where the functions a(u), b(«) and c(u) read as

afw) =1+ 2 bu) =1 e(w) = 2 neC
U u

a(u) = sinh(x 4- 1) b(u) = sinhu c(u) = sinh

for the XXX and XXZ R-matrices, respectively. We will use the standard notations for
the entries of Ty

Totu) = (2 I‘i)m. 215)

The local integrals of motion H® are obtained as the coefficients of the polynomial £(u)
(2.2) 4,9

tw) =Y ut.-H® for the XXX case
Z (2.16)
tu) = Zexp(ku) - H® for the X X Z case.

The determination of the additive deformation F(u) from the conditions (2.8) and (2.9)
by the given matrix To(x) is a complicated problem which is as difficult as the search for
the new representations of the algebras corresponding to the FCR (2.1) or the RE (2.10). Due
to this we will construct some special solutions F(u) of the equations (2.9) and (2.8).

Let the matrix Tg(x) obey either the FCR (2.1) or the RE (2.10) with the R-matrix (2.14).
When the matrix Tp(x) satisfies the RE (2.10}, we require also its unitarity

T (—u) ~ To(u + ).

Further simplification arises from the quantum determinant, which is a Casimir operator for
the algebras connected with the FCR and the RE [4,9]. For the FCR it is defined as

Ag(n) = det, To(u)
= D(u = 5MA@ + 31) = Bu = §mC(u + §n)
= AQe — 3mD +3n) — C@ — B + §n)
= A+ 3m)D{u — 1) — Blu+ 3mCu — 3n)
= D(u + §mAQ —~ in) = C(u + 3n) B — in). 2.17)

To fix the additive deformation F(u) we will use the following idea. We will choose
additive deformations that only slightly deform the quantum determinant. For example, we
can try the simplest deformations of the type

0 0
Fu) = ( F)B-! 0) (2.18)

where f(u) is a function of the spectral paramter u only. As the monodromy matrix is

T(u) =Ti(u) - Tou) - - ()
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where the T; () obey the FCR (2.1) and can be deformed by the rule (2.18), the deformation
(2.18) changes the integrals of motion constructed by (2.16). The quantum determinant of
the matrix To(u) modified by the rule (2.4} with the additive deformation F(u) (2.18) now
reads

AG) = Bo() = flu + 3B — B 1+ 3n)
= Ao(W) — fu — JmB~ (¢ — ImBu + i)
= Ao(w) — fu — 3mBG + 5mB~ u — i)
= Ao(w) — f(u + §mMB~ (u + 31)Blu — in) (2.19)

where Ag(x) stands for the quantum determinant of the initial matrix Th(x). Because the
quantum determinant A(u) has to be Casimir operator for the new algebra connected with
the FCR or the RE, this equation gives a very strong restriction on the functions f(u) and
the entry (To(u))12 = B(u).

We will also use a more complicated deformation F(u)

fe— 1=

F) = 2.20
@ (u+ﬁm+mﬁm—mw4.m+ﬁyw (2.20)

where we will demand that functions B{(u), f(x) and the combinations (£ (u)[A(u):D(u)])
do not depend on the spectral parameter #. One cannot use the additive deformations (2.18)
and (2.20) for an R-matrix of the XY Z type, because then [B(x), B(w)] # 0. A similar
restriction holds for the linear r-matrix algebras also.

Note that in the theory of quantum groups, where the FCR and the RE do not depend on
the spectral parameter #, the condition (2.19) is simplest.

3. Examples of quadratic R-matrix algebras

Here we consider a few integrable systems originated by various additive deformations
Fu).
(1) A singular oscillator is connected with the T-matrix

A B 0 0
T(u)=T0+F=(C D)(u)+(ﬂ3_1 0)

u+ipg) 4 0 0
= ( ) ) +| & 0 (3.1)
-p u —{pq} 7
where braces {, } stand for anticommutators and p,g are the canonically conjugate

momentum and coordinate of the particle.
The matrices o127 (1) and 01 2To(x) (3.1) give rise to the Hamiltonians

Hy=p*+q®

H-—-Ho"i'%
q
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where o¢; are the Pauli matrices.

The operators To(4) and T(u) (3.1) obey the FCR with the R-matrix of the XXX type
(2.14)

(2) A special case of Neumann's system is defined on the Lie algebra e(3) [12]. Let the
variables M, pu, @ = 1, 2, 3 be generators of the Lie algebra ¢(3) obeying the commutator
relations:

[Ma, Mﬂ] = —i&'aﬁyMy {Ma, pﬁ] = - igasyp?
[Par ppl =0 a,f=1,23.

with the special values of the Casimir operators
a®— pape =1 I=Myp, =0.

The initial operator Tp(x) and the modified operator T'() are defined by

w? 4 2Mau — MY — M3 — % Bbpeu+3{ps, My}
To(u) = | . beR (32)
bp_u+ 3{ps, M_} b*p3
and
2_1
it D' 0
Twy=Tow+| P ~l o o pelR (3.3)
0 0

where we use the natural notations M. = M, £ iMs, pr = py+ < ps, and the braces {, }
stand for the anticommutator.
The Hamiltonians corresponding to Ty(u) and T(x) (2.16) read as

Ho = M? + M2 + b*p?

w-3
P

H=Hy+

The initial operator Tp(u) (3.2) and the modified operator T (i) correspond to the special
case of Neumann’s system and obey the FCR (2.1) with the R-matrix of the XXX type
(2.14). The matrix T(u) was studied in [12].

In what follows we will consider the lattice integrable systems connected with the RE
(2.10). The respective monodromy matrices will be constructed by the rule

N=1 N-1 -1
T () = Kyu) ([‘[ Lk(u)) K_(a) (1‘[ Lk(—uJ) : (3.4)
k=2 k=2

Here the matrices L;{x) and K obey the FCR (2.1) and RE (2.10) with one R-matrix. There
are some isomorphisms among the matrices X_(x) and K (u) [16], for instance

Ko@) = K'(—u — 1) or Ko@) = (K (~u =) (3.5)
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where t stands for matrix transposition. Because of this we will write the matrix K_(u)
only. The integrals of motion H® are obtained by the rule (2.16), as well as for the FCR
algebra.

(3) The Toda lattices associated with the Lie algebras of B,, C, and D, series [2, 6].
We introduce the initial operator K 4{(u, p, g)

(v — p)exp(q) exp(2q) )

(3.6)
u? ~ p? exp(g)(u + p)

Ka(u) = (
where p, ¢ are the canonically conjugate momentum and coordinate of the particle. The
operator K, () obeys the RE (2.10), where R = R(u — v} and § = R{u + v) with the

R-matrix of the XXX type (2.14).
According to the rule (2.20) we will consider a modified operator Kpc(u. p, g)

Kpc(u) = Ky(u) — Fu)

> +p 0
=Ky o . 3.7
exp(—29)ly + 2 exp(g) -+ 28 exp(q)] i B

The operators K4 and Kpc can be factorized by three simple factors [16].

Because the quantum determinant of the initial operator K(u, p, ¢) is equal to zero
{Ag(x) = 0) and the initial operator K4(u, p, g¢) obeys unitarity —A(—u — 17}, we can also
use a more complicated deformation Fp (1)

B-lu)D(w) B~ V(u) + flu)
Fp(u) = - ( ( ) f ) . (38)
0 A(u) B~ ()
Having this deformation, we obtain a modified operator Kp(«, p, g) {11]
—pYel +e~f(u+ 2 4o _2
Kpw)=Ka—Fp= ((u Pt +e(utp) ¢ _e ) . (3.9)
u? — p? (u—pye™®+el(u+p)

The operators K4, Kpc anmd Kp correspond to the Toda lattices associated with the
Lie algebras of Ay, B, (8 =y =0), C, (¢ = 8 =0) and D, series respectively [11].
The operator Kp can be further generalized by the rule (2.20)

= +5 0
Kep(u)=Kp — 1 " . (3.10)
[¥ + 20:coshg + 28p sinh g] - -8

sinh? g
The modified operators Kpc(u), Kp(u) and K,p(u) obey the RE (2.10), where R = R(u—v)
and § = R{u + v) with the standard R-matrix of the XXX type (2.14) [16, 11].
The Hamiltonians for these systems follow by the rule (2.16) from the matrix T (u) (3.4)
with the matrices

U — Pk —cXP(Qk))
exp(—4qx) 0 '

The matrices K+(u) are constructed from the matrices K4, Kze, Kp, Kep or the unit
matrix.

Li(u) = (
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Among the Hamiltonians there are

N

N-1
Hy = Z it + Z exp(gj+1 — 4j)

=1 =1
Hpe = Hy + y exp(—2q)) + [20 + 28p1) exp(—q1)
Hp = Hj + exp(—q1 — q2)

¥ + 2acoshg; + 28p; sinh ¢y
sinh? g,

HgD = Hp +

the complete set of Hamiltonians and K matrix, except the matrix K4, was considered
in [11].

(4} The relativistic Toda lattices associatsg with the Lie algebras of B,, C, and D,
series [13]. We start with the initial operator K4{x, p, g)

sinh(x — p) exp(g) exp(2q) )

i) = ( . , .
sinh(u — p) sinh(x + p) exp(qg)sinh(x + p)

(3.11)

where p, g are the canonically conjugate momentum and coordinate of the particle. The
operator K(u) obeys the RE (2.10), where R = R{u — v) and § = R(u + v) with the
R-matrix of the XX Z type (2.14).

We can consider an operator 4 ac(u, p, g) modified by the rule (2.20)

Kac(u) = Ra(u) — F(u) (3.12)
o B 0
_ I?A + sinh & coshu

« B
sinhu coshu

exp(—2g}[y + 2« cosh pexplg) + 28 sinh p exp(g)]

The operators K 4 and 4 ¢ can be decomposed into three simple factors [13].

Because the quantum determinant of the initial operator X (4, p,g) is equal to zero
(Ag(u) = 0) and the initial operator is the unitary D{y) = —A(—u — 1), we can use a
more complicate deformation Fp(u) (3.8), as well as in the non-relativistic case. This
deformation gives a modified operator K, 2. q)

Ko@) = Kaw) + Fp(s)
sinh(z — p)e? + e~4 sinh(u + p) €% + e % —sinh’y -2
= ( sinh? & — sinh? p sinh{u - p)e~? + e? sinh(x — p) )
(3.13)

The operators 4 w K sc and 4 p correspond to the relativistic Toda lattices associated with
the Lie algebras of Ap, B; (8 =y =0), C, (¢ = = 0) and D, series, respectively {13].
The operator Kp can not be generalized by the rule (2.20), as it was in the non-relativistic
case, since now the entry B(x) of the matrix Kb depends on the spectral parameter u.

The initial operator 4 (¢} and modified operators X gc(u) obey the RE (2.10), where
R = R(u—-v)and § = R(u + v) with the standard R-matrix of XXZ type (2.14) [13].
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The Hamiltonians for these systems are constructed by the rule (2.16) from the matrix
Ty (3.4) with the matrices L(u)

sinh(z — pg) — cxP(Q:c))
exp(—qy) 0 '

The matrices K+ () are constructed from the matrices 4 A 4 BC» 4 p or the unit matrix.
Some Hamiltonians produced by the scheme we have developed read as

Ly(u) = (

N
Hy =Y exp(p))l1 +exp(gjs1 — )]
j=1

ﬁgc = ﬁA + y exp(—241) + [2x cosh py + 28 sinh p) ] exp(—q1)
Hp = Hy +2exp(q) + g2) cosh 1(ps + p2) +exp(2q2).

the complete set of Hamiltonians is considered in [13].
{5) The Heisenberg XXX and XXZ model. Let the L-operators Lg() in (3.4) be

usP — s s®
Li(u) =

SP usP 5P
(3.14)
— sinhu S& — coshu S, (k) s®
L(u) =
s sinhu S + coshze 53

where k is the number of the particle in the chain and S%® are operators representing the
algebras with the quadratic relations described in [15]. In particular, the operators S, can
be realized by the spin operators s, [15], for instance

So=1 §3 = ns3 St = B8y
(3.15)
So = cosh 17 S3 = sinh 2153 Sy = sinh fncosh n Sz

for the XXX and XXZ chain. This choice corresponds to the ordinary XXX and XXZ
spin-1 chains [5]. The operators Ly and L, obey the FCR (2.1) with the R-matrix of the
XXX and XXZ types, respectively.

We will consider the following initial operators for the XXX model

(uSy— S3)S-  uwlsZ - 52
Ka() = ( ; o )
S S_(uSo+ S3)
) (3.16)
(uSo - S3)S by
KA:(H)=( o : )
u SD - S3 S+(uSo + Sg)
and for the XX Z model
- (sinh u Sy + coshu §3) S 52
Ka(u) = ( 2 i )
A S_(sinh Sg — coshu S3)
(3.17)

- (sinh # So + coshu S3) 5,4 s2
Kapw) =

sinh®u S§ —cosh®u §7 Sy (sinhu Sy — coshu S3)
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which obey the RE (2.10} with the corresponding R-matrices.
The modified operators Kpgc and K gc are constructed from the operators L, (3.14) and
&4 (3.16) and (3.17) by the rule

Ksc = aKa + BK a2 + y[2sinhu SL(x) — A@w)I]
Koc = aKa + BKay + y[2sinhu ST () — Au)]] (3.18)
a By eR Au) = det, L(u) Au) = dety Liw).

Here [ is the unit matrix, A(u) and A(u) are the quantum determinants of the operators
L(u) and L(u) respectively.

The operators K4y, K42 and K a1, Kaz, 4 pc can be decomposed into three simple
factors [16,3]. As well as the Toda systems we can also construct the more complicated
operators K p and K b, which are not factorized by simple factors.

Let the deformation read as

B lw)Du) B '(w)y+ f(w)
Fp(u) = — ( : -1 )
0 Al B~ (1)

where the operators (Si)"*arc replaced by the operatorx Sz, respectively. Then the
modified operators Kp and Kp are

uSoSI - iS3Sz u2S§ bt S%
Kp() = ( 202 _ @2 . 2)

(3.19)
sinhu SoS; +icoshu S38;  sinh®u (So — A(w)) — §2 )

sinh®u Sy —cosh®u $2  sinhu Sp$; —icoshu 555,

where §1 = ) £iS5; and A(x) is a quantum determinant of the operator L(u) (3.14). The
operators Kpc(u), Kpc(u) and shifted operators X p(u — n), Kplu — n) obey the RE
(2.10) with R = R( — v) and § = R(u + v — ), where R is the corrcspondlng R-matrix
(2.14). The operators Kpc and Kpe were considered in [16,3] and the operator Kp was
introduced in [11].

Following [16, 3] we present some Hamiltonians in terms of the spin operators s; (3.15).
They are constructed by the rule (3.4) with the matrices K4, Kpc, Kp and K4, Kpe, Kp,
and for an open chain [16, 3] read as

N
Hy = Zsfk)sif"i'l) + SZ(&}Sék-i-l) +5§k}3§&+1)

Ep(u) = (

Hpze = H, +Q’.!‘in +ﬁS(_”

N
Hp = Hy + SI(N"'I) Zs,m
k=1

N
Hy = Esfk).s'{k“) + sinhps{0s D
k=1

ﬁgc = ﬁA +sm.hn (as_(,_” + ﬂ.S‘(_”)

N
Hp = Hy +sinhns{™D 3" 51(k).
k=]
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In [16] operators like Kpe were introduced for an XY Z magnet chain and for the non-
linear Schrédinger equation. For these systems operators similar to K have not yet been
considered.

We do not know of examples of the quadratic R-matrix algebras when one modifies the
inittal algebra and § matrices depending on dynamical variables. Some interesting examples
of such deformations for the linear r-matrix algebras will be considered in the next two
sections.

4. Deformations of the linear r-matrix algebras

In this section we consider three Lie~Poisson algebras connected with different R-matrix
algebras [4,5,17-19). The Lie—Poisson brackets

(LY, LOY} = [r(h 1), LY + L ()] @1)

is a linear classical limit of the FCR (2.1) by the R(x) = I + inr(u) + O®) the
T(u) = I +inL(u) 4+ O(?), where the parameter 5 is a Planck constant [, ] - —in{, }.
By the substitution S(u) = I + ins(x) + O(%?) the bracket

1 2 1 2 ) 2
L), L)} = [r (3, ), LY + LT + [s(h, ), LAY — L] (42)
is related to the RE (2.10). The linear limit of the GRE (2.11) is

2 1 2 1 2
{}a(l), L)} =[r(h, ), L) + L]+ Is(h, 1), L) — L(w)]

T {0 1), LO) + LGbs + 106, ), LAY = L)} 43
Here
Ay =I+ina()+0W? ... D@)=1+ind@@) + 00
_a+d _btc _a-d _b-c O
2 2 2 2

and [, ] and {, }. stand for a matrix comunatator and anticommutator respectively. We also

2
use the standard notations E.(A) =LA®I, L{u) = I @ L{u) introduced for the quadratic
algebras. The brackets (4.2), (4.3) define the Lie—Poisson algebras if the matrices r(d),
s(A), t(A) and w{l) satisfy some modified Yang-Baxter equations [19, 18]. For simplicity
we restrict ourselves to the r-matrix algebra (4.1) and the rs-matrix algebra (4.2} in the
two-dimensional auxiliary space only.

Let the ‘vacuum’ operator Lo

L(JL~—31‘(A) —(“ b)( 45
o)—;; Uk—c_a u) 4.5)

obeys the linear r-matrix algebra (4.1) with the r~matrix

3
r() =) w(Mor @ o (4.6)
k=1
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where 1, (A) are functions of a spectral parameter only and oy are the Pauli matrices.
We will require that the r-matrix obeys the classical Yang-Baxter equation (CYBE) and is
antisymmetric, r(A) = —r{=21) {4].

Let us introduce a deformation of the ‘vacuum’ Lo(A)} operator (4.5) of the form

a b
L= (F(b, M) +e -a)m @7

where F(b, ) is a not yet defined function of the matrix entry »(A) and the spectral
parameter A.

Theorem I. The L(L) operator (4.7) satisfies the linear rs-matrix algebra (4.2), if w; =
w2 = w and the function F(k, 1) has the form

F(b,2) =— fFA1(Y)

where f(1) is a function of the spectral parameter A only. The corresponding matrix s(2, @)
is given by

sy =a(d, wo.@o. o_ = (? g)

where o (A, i) is
aF arF
ad, p) = w — u) ('é'b' (&) — m (u))

= — wi —p) (FOB2) — FUP~Ew)). (4.8)

The proof is based on a direct but cumbersome computation, and is omitted.
We will use r-matrix XXX and XXZ types only [4]. These r-matrices are

3

r{i) = % Zak ® oy for the XXX case 4.9
k=1

r(A) = sinzll (o1 Qo1 +01 D03 +coshioy @ o) for the XX Z case. (4.10)

As for the quadratic algebras, one can not use the deformation (4.7) for the linear r-matrix
of the X¥ Z type, because uny # wa.

In this section we use the notation 4(A) for the determinant of the L-operator, because
the quantum determinant A(x) is a Casimir operator for the quadratic R-matrix algebras,
but for the linear r-matrix algebras the determinant d(A} is a generating function of the
integrals of motion. It follows from the algebra (4.2) that the function d(A) = det L{A) can
be taken as a generating function of the integrals of motion, since

{[dA),d(w)} =0 rAped (4.11)

The determinant of the modified operator L(A) is d(A} = dp(A) — f(A). We deform our
system in such a way that new integrals of the motion differ from the old cnes by some
constants

Toew = I + Ji freC.
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Let the entries of the matrix Lg(A)} be defined as the absolutely convergent Laurent
series for the XX X model, or the Fourier series for the X X.Z model of the parameter A or
their terms

a(ly = Eakﬂ‘ for the XXX model
k

a(d) = Zak exp(ki) for the XX Z model.
%

We can introduce a new deformation of the ‘vacuum’ Lo(A) operator (4.5), which has the
form

a b
Ly = (Fw(b,l) e _a)(x) (4.12)
where Fy(b, ) is a function of the spectral parameter A and the entry 5(3.), and reads
Fy(b,3) = Lfv (05~ )1+ (4.13)
N N
=Y o fu= Y feexp(kh). (4.14)
x=0 k=—N

Here the brackets [ }; denote the standard (or Taylor) projection

o0 +o0
[ele = | Dz | =D adf
+ k=0

| k=—00
4.15)
[ 400 +N
[z]+ = Z Zrexplkh) | = Z 7, explka)
| k=—00 + k=N
for r-matrices of the XXX and XXZ types, respectively.
Note that we can also use a more general projection [ ]y n (Laurent projection)
M 400 4+N
[zluw = Z Zklk] = 2 zx exp(kA)
Lk=—00 My =N
(4.16)

[ +oo M
[zlmw = Z Zk exp(kl)] = Z zp exp(khr).
MN

Lk=—00 ==M
Corollary 1. The Ly(A) operator satisfies the linear rs-matrix algebra (4.2), if w) = wz =
w, and the matix sy (A, i) is given by

s, p)=ay@, plo-Qo_ o. = ((1) g) .

The function oy {2, p} is defined by

aF 3F
(h, p) =w — ) [— A= — (u)]
A 3b ab ],

= —w(h — ) ([FRE2 W) — [F @b 2 (wls) - (4.17)
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The proof is based on a straightforward calculation.

Note that now d(}) —do (M) +bFy # da(A) = f(A), and therefore the integrals of motion
of the deformed system are functionally different from their undeformed counterparts.

Let us rewrite equations (4.1) and (4.2) in the form [1]

1 2 1 2
(LAY LN} = [rizfi, ), L] + [raa (&, ), L)} (4.18)

where r1a2(A, ) — Pria{ut, X) P and the operator P is a standard permutation of the auxiliary
spaces [1]. The matrices ri2 = ra; = r stand for the r-matrix algebra (4.1), and dy2 = r £
stands for the rs-matrix algebras (4.2). We can also consider the Poisson structure (4.18)
for the powers of the L-operator

! n 2 m {n,m} ! {n,m} z
{LPAYSL™ ()} = [ry™ (A, ), LAY = [ra ™ (4, ), L))

(n m) = a=k=1y m=i=1, 1k Z) @12
g;:: 3 L L.
As an immediate consequence of (4.18) and (4.19) we arrive at
{tr1(i"),tr2(.%.”')}=0 nm=12.... (4.20)
and the integrals of the motion are
H,(3) = tr;(L}) =12, n=12,.... (4.21)

Note that
dy=detL(A) = Lo (L?) = 1 Ha(M).

The Lax representation corresponding to the Hamiltonian H, (4.21) (see the work [1])
reads

L) = {Ha(0), L)} = [Ma(ut, 4), L(w)] (4.22)
where the matrix M,(u, A) is determined by
My(p, A) = nul(i"-lm) n=1,2,....
To prove this we should take into account (4.19)
L= {HyL}=tll" L} =m0, L+ o0, L.

Here the first term is zero as trace over the first space of the commutator and therefore

=1 1 H
My, N =t} =t ) (L 'ra LF)
k=0

=l 1
=Y (L") =nm @ ry)
k=0
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where cyclic permutation under the trace operation is used.

The Hamiltonians H,(i) (4.21) are functions of a spectral parameter. In order to
introduce the Hamiltonian H, which does not depend on a spectral parameter, one needs a
projection

1
H = Lo [H(\)] = ®ild(3)] = 1,0 L2 (4.23)
where &, is a linear function on the spectral space, for instance
drl
®,lz] = vl Az . 4.24)
A A=0

With the help of the algebra (4.2) and equations (4.18)+(4.23) we construct a Lax
representation for the L-operators (4.5}, (4.7) with the Hamiltonian (4.23)

. 1
L(p) = (H, L(w)} = {3Paltr L2W)], L)} = [M (), L()]

(4.25)
M) = @3l (LOWIra oo 1))
For the *vacuum’ Lg-operator (4.5) one obtains ry; = r and
3
My =&, [2;&&)%@ - ,u)ak] (4.26)

where the natural notation My is used for the second matrix in the Lax representation with
the ‘vacuum’ operator Lg.

As an example we consider the special case of ‘vacuum’ Lg operators and functionals
&, , which results in

01
My=0,= . 4.27
b =04 ( 0 0) (4.27)
It is a rather strong restriction on the Ly operator (4.5) and the Hamiltonian {(4.23). As an
immediate consequence of the Lax representation (4.25} with the matrix My (4.27) we can
rewrite the operator Ly in the form

1
~1b,

b
Lo(u) = ( ) b; = {Hy, b} (4.28)

1 1
“‘ﬁbxx jbx

where Hp is a Hamiltonian corresponding to Lo. The equations of motion are constructed
from the equation {d(1}, H} = 0. They follow from the formula (4.28) and are consistent
with the Lax representation (4.25)

b =bypy = 0. (4.29)

For the fixed operator Lqg(A) and projector ; we can consider an £, operator modified
by the rule (4.7). In this case the matrix M (i) in the Lax representation with the modified
'L{u) operator (4.7) is constructed by the rule (4.25), where ry; (A, n) = r — 5, which gives

0 1
M) = (_u(m 0) . (4.30)
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Here we have imposed the property on the linear functional &, that defines a function u(u)
O [u (—F BTN + () + (FIBTIN) — FUIE2 ()b (M)]
= FOb~H () = u(p).
One can apply a deformation (4.7) to the operator Lg (4.28) that gives rise to an operator
(oot )
L) = b, ={H,b} {431
—bOuQ) — 30z 3b:
where H is a corresponding Hamiltonian. The equation of motion now reads
(382 + ud; + Ju)b = Bi[ulp = 0 (4.32)

where B is the Hamiltonian operator of the first Hamiltonian structure for the coupled Kdv
equation.

Where u(A) is a rational function of the spectral paramter this equation has been
investigated in many papers. Some of its solutions with r-matrices of the XXX type
are considered from the viewpoint of the rs-Lie—Poisson structure in the works [7, 14].

5. Examples of the rg-matrix algebra for integrable systems

A special form of the ‘vacuum’ Ly operator (4.5) has been considered in [7, 14]. The
operator Lo was taken in the form (4.28), where the meromorphic function 5(A)

] m—n—k

2 "
b =3 T + 2 Y Bk 5.1)

k=1 k=n Je=n

depends only on the coordinates of particles, x; being the coordinate of the jth particle.
The Ly operators defined by the rule (4.7), (4.31) are related to the restricted flows for
Kdv [14] and to the motion on real Riemannian spaces of constant curvature [7]. Among
the dynamical models studied in [7, 14] there is a Henon-Heiles system of type (ii). Its
Hamiltonian (A, B, £ are constant)

= %(pi + pi) + %(sz + By + 2%y + &y*

has been extensively studied both in non-integrable and integrable regimes. The integrability
holds only for the following three sets of parameters

i) A=B £
(i)
(ii) 16A=B &

o
o
— b3 e

16
-

In this section we consider a class of integrable systems with one general property,
namely, each system from this class is linearized on the Jacobi variety I' = @I';, where T
are hyper-elliptic curves [21]. The Henon-Heiles system in cases (i) and (iii) belong to this
class,
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Let us write an initial system in the variables (p;,¢;), j = 1,...,n, where {p;, g} =
djr. We will assume that there exists a canonical transformation

wy=Ulgi....@ni Pt pn) e=Velgr, oo guip .o pr) k=100, (5.2)

such that in the new variables (v, ux) ({v;, ux} = d}) equations of motion are separated
and have the form

v? = Gy(ux) (5.3)
where the functions Gy are given by the Laurent sets
Ge(w) =) ghul. (5.4)
We associated to such a system the L-mafrix in a special form
LAY = SFLY (. ve, we) (5.5)
that acts in the extended auxiliary space
Vo = Dr Vi) (5.6)

and the matrices Lf,f,‘)(l, vk, Uz) are equal to

- A — Uy o s "

&) — =

Ly h, v, uy) = ([({N(—::))] " ) (C‘N(A, ) " ) . (5.7)
— ) 4

There Lf\’,‘)(l, Vg, #x) matrices are the deformations of the special ‘vacuum’ matrices
Lo(A, vg, )

-t A — U
Lo(A, vg, ug) = ( 0 " ) (5.8)

which obey the standard linear r-matrix algebra (4.1) with the r-matrix of the XX X type [4].

Thus we associate to our system L-matrix, which has a block structure, each block Lg’,‘)
obeying an rs-algebra with a common r-matrix and different matrices 5; constructed by the
rule (4.17). The entries ¢y (X, u;) of the matrices Ly(X, ug, ;) (5.7) are polynomials of
two variables A and uy

+00 N~ N-1-i
en(h,uy) = I:Z DY }.J+1] ZAI E fon - (5.9)
=0

i=0 j=0

Remember that r.he brackets [ ], denote a Taylor projection by the rule (4.15). The
determinants dN of the matrices L Nk (A, ug, w) (5.7) are equal to

N . ,
i=]
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and the functions Gy (5.3) are defined by gJ = f; k (5.4).

A generating function of the integrals of monon can be taken as a determinant of the
L-marrix (5.5) (&) = det L) = []_, 2% . Hamiltonians for these systems can be defincd
by

d(n-1JN

Hy = FICEDI

d(k)‘ (5.11)

and their explicit form to within a constant factor reads

m- T ST f e

k=1 k=1
=T 4 gviY BeR (5.12)

where T® is a kinetic energy and V" is a potential. If higher coefficients £ of the

polynomialos f®(A) are the same for all particles ¥ = £ for all k, j, then the
Hamiltonians (5.11) can be rewritten as

(5.13)

Hp =Y di(3)
k=1

A=0
For the Laurent projection [ Jyy (4.16) the Hamiltonians (5.12) are equal to

n -1 N
w =[] (- 3 o). a1

k=1 J=—(M-1)

The operator Lo (5.8) and the modified operator Ly (5.7) have a hidder internal
structure [10]

LO(A, Ui, uk) = (

. )‘._uk Z:aj (k) A - Za -1 (k)
0 U 0 E“ (&)
~Y o5 (&) A — Ea—l (k) (5.15)
Ly, ve, ) = [ Fn (M) ] >
1%
A_Z“fqu() +

where the variables v, and u; can be considered as linear combinations of some canonical
(CIRR ) PR ; : ;
variables p;”, ¢;~ j=1,..., K. If we consider n-particle systems only and require that

the Hamﬂtoman (5 12) has a canom’cal form with a kinetic energy

-f T
k=1

then all the internal structure (5.15) is reduced to the Jacobi transformations for the n
particles.
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We illustrate this scheme by the simplest cases of the two- and three-particle systems
under the Jacobi transformations. For tw&pamele systems, after the transformation
Uy = g + g3, 42 = g1 + g2, the uniform potentials VN of the degrees j = 1,2, ..., N read

Vlm =efq +ef g

Vi =Vt et @i+ ad) + s

V2 =V 4 ef (g} +3018) + &5 (¢} + 3a}a2) ©.16)

Vm ZZC: (f(1>+( l)lf(z))ql -1 P

J=1 i=0

where 5 = (f3° + £} and C} are the binomial coefficients.

For the three-particle systems with equal masses we can choose the coefficients fy & in
such a way that the Jacobi transformations (5.2) have the simplest form

= (g1 — 2¢2 + @3) iy = —3(g1 — q3) us={q +q>+qs)

with fi' = 6, £ = 18, £’ = 3. The first uniform potentials V< of the degree
ji=12,...,N ate

(3) — (f(l) f(z) + f1(3))q] + (f(3) zfl(l))qz + (f](l) + 3f(2) + fl(3))q3
Vil = VP + (5 + 957 + @ + i) + R + 1Pha
+ 2 =45 + g0 + 2050 —9£2 + £ )aigs

. .
VP =V Y fmglaias
JHkH=N

5.17)

where the coefficients fiy are expressed through fj(") and the binomial coefficients C;
For the two-particle systems the Hamiltonian Hgfz) (5.12),(5.16) coincides with the
Hamiltonian of the Henon—Heiles system of type (i) and the corresponding L operator (5.5)
has been considerad in {20].
The Henon—Heiles system of type (iii) can be embedded in the scheme developed after
a more complicated canonical transformation.

Proposition 1. The change of the canonical variables vg, u, k = 1, 2, into the variables
x, py and y, p, under the rule
2 =0 dl ()") -

bi(d) — b2(A) |,

xeR

e = a(A) -
TR ~ ba(R) |,

(5.18)
y=B G+ —Jo8 (2) pem

2
py = % @)+ +ap 2 (1 4 i—z)
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where a;(A) and b.(L) are the entries of the matrices Ly(A, v, ) & = 1,2 (5.7), is a
canonical transformation.

Proof. We fix a variable x? and the Hamiltonian H = (d; + d»)(*» = 0) by (5.13). Then
a corresponding momentum p, = {H, x} follows from the rs-algebra (4.2)

2xpx = {H, x2}
i () = i)
= {dl (3.) +d2()“)! b] (nu‘) _ b2(ﬂ‘} 12=0,1=0
di(p) ~ da(1)

{0} + da(A), b1 () — ba(p)}

=Tl W = )y

— o D) — ) ai(u) — &)
b1 () — ba(u) br(p) — b2(ut)

u=0A=0

u=0

_ aiw) —ax()

= =0
) —baguy| TH =

where we have used the explicit form of the Ly operators (5.7) and the technique developed
by Sklyanin [17]. The variable y is fixed by the condition {x, y} = 0 and a comrespending
momentum p, = {H,y} 15 calculated from the rs-algebra and the Hamilton-Jacobi
equations.

Here we have used the following relations

|
{B(A), a()t = —— (b(p) — b(A))
[T

2
Py (a(u) —a(})) =0

{b(1), b(u)} =0

{B(A), ()} =

which are determined by the r-matrix only and a relation {dy(A), d;(1)} = O, which is given
the rs-algebra (4.2) with s,-matrices (4.17).

To describe the Henon—Heiles system of type (iii) let us apply this transformation to
the Ls(A, vy, ;) matrices (5.7) with the same third power non-linearity, as was done in
the case (i). After this transformation we obtained the [ operator (5.5), which has been
investigated in [20] for the special choice of the function fi(A)

£ =103 - 1422 - 4%, (5.19)

We can not prove that after the transformation (5.18) we will arrive at the Hamiltonians
(5.12) in the natural form H = T 4 V, without some additional assumptions, for instance
some constraints on the functions f,f,k)(k).

For the two-particle system the transformation (5.2) is a special case of a wide class

of canonical transformation. For instance, we can use the canonical transformation of the
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variables u, p, and v, p, to the variables x, py and y, p, by the rule

P
x“=iju"+yvﬂ—% o By, eR
=0

o Pv a—
Pr= -1y v 1"
(5.200

y=26 - yu - (25

Id Ji2 .
Py = (;3 : Dy ( - i‘ZJ’wJZChy«’ 2@+ 7! (v 1)2,-“) .

i=0 =0

This transformation extends the transformation (5.18) to arbitrary real constants ¢ and S.
The complete classification of the two- and three-particle systems described in this
section and their identification with the known systems will be studied elsewhere. For the
two-particle systems we can consider potentials with higher powers of nonlinearity N for
the Taylor (4.15) and Laurent (4,16} projections by the transformations (5.18) and (5.20).
For the three-particle systems we can generalize the operator L (5.5) and consider
another ansatz for it, which has the block in the form (5.1) [7]

L) = Lyp(A) @ L) (5.21)
where
2
L . . )
L b Amm g L_(—u; A—a3)
) A — ﬁ v — ke’ 3 )
CN 2 1 X

We can also consider the extension of the canonical transformations (5.18) and (5.20) to
this case.

6. Conclusions

The next problem is to consider the general form of the linear r-matrix algebra (4.4) with
four matrices r, s, ¢, w and the deformations of the *vacoum’ operators Lo (4.7), where F(A)
is a function of a spectral parameter A and coordinates x, but is not a function on entry
b(2). It will be interesting also to examine the L-operator for Calogero systems

: Y1 D%k k=t xf
J— 3
L, =
S+ oy~ Sl
=t [y

which satisfy the linear r-matrix algebra (4.1) with r-matrix of XXX type (4.9).
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