
Additive deformations of the r-matrix algebras

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1994 J. Phys. A: Math. Gen. 27 6759

(http://iopscience.iop.org/0305-4470/27/20/015)

Download details:

IP Address: 171.66.16.68

The article was downloaded on 01/06/2010 at 22:22

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/27/20
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


I. Phys. A Math. a n .  ?J (1994) 6759-6780. printed in the UK 

Additive deformations of the r-matrix algebras 

A V Tsiganov 
Department of Mafhematical and Computational Physics, lostitUte of Physics, 
University of S I  Petemburg, 198904 St Pelemburg, Russia 

Received 20 April 1994 

Abstract. We show how lo commcl new representations of the various R-matrix algebras 
starting from known repmsentations. For linear r-matrix algebras we investigate a dynamical 
r-matrix which depends on the spectral parameter and half of the dynamical variables (particle 
mordinates) only. The Toda lattices and the Henon-Heiles system illusmle !he scheme. 

1. Introduction 

The progress in understanding the algebraic roots of quantum and classical integrability 
achieved in recent decades has already resulted in the introduction of several new algebraic 
objects in the framework of the quantum inverse scattering method (QISM), such as the 
Yang-Baxter equation (YBB) [4,19], the fundamental commutator relation (FCR) [9], and 
the reflection equation (RE) [16,8]. One of the main problems of the QISM to find new 
representations of R-manix-algebras for a given matrix R(u) ,  since they correspond to new 
integrable systems. 

In the present paper we develop a scheme allowing the construction of new 
representations of the various R-matrix algebras, starting from the hown representations. 
The paper is organized as follows. In section 2 quadratic R-matrix algebras and their 
deformations are described. Examples of such algebras are given in section 3, with 
applications to the theory of the finite-dimensional integrable system. In section 4 the 
special deformations of the Linear r-matrix algebras in two-dimensional auxiliary spaces 
are discussed. Examples of the integrable systems whicii are connected with these linear 
algebras are given in section 5. In the conclusion we discuss some other possibilities of 
deforming the R-matrix algebras, and their applications. 

2. Deformation of the quadratic Rmatrix algebras 

The standard notations for the basic quadratic R-matrix algebra gR are given via the 
fundamental commutator relation (ER) [4,91 

1 2  2 1  
R(u - U) T(u) ?‘(U) = ?‘(U) T(u)A(u - U) (2.1) 

where T = T ( u )  8 I ,  T = I @ To(u), and the spectral paramters U and U are associated 
with the first and the second auxiliary spaces respectively. The operator T(u)  is an N x N 
matrix in the auxiliary space, with entries E j  being operators in the quantum space. The 
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matrix R(u) is a solution of the YBE, and it acts on the tensor product of two auxiliary 
spaces. It is easy to see that the matrix trace, f(u), of T ( u )  

forms a commutative family of operators 

[ t (u ) ,  f (U)l  = 0 (2.3) 

which we will consider as integrals of motion of some quantum integrable system. 
Let TI(u) and T&) be two representations of the algebra (2.1) in the quantum spaces VI 

and V2 respectively. Then the matrix T(u)  = Tl(u)fi(u) also gives a representation of the 
algebra (2.1) in the quantum space VI €3 V2, called the tensor product of the representations 
TI and T2 [4,9]. The possibility of multiplying the representations of the algebra (2.1) 
immediately provides a way of constructing an arbitrary number of new representations 
from the know representations. 

Let the operator To(u) be a representation of (2.1). Then one can introduce a modified 
operator T(u)  of the form 

T(u)  = TO@) - F(u) or To(u) = T ( u )  ' &(U) = & ( U )  ' T(u) .  (2.4) 

Here F(u)  is an undefined, but additive, deformation of the matrix TO@), and the matrices 
SI ( U )  and &(U) are 

&(U) = I + (& (U)  - F(U)) - '  . F(u)  &(U) = I + F(u)  (To(u) - F(u))- ' .  (2.5) 

After substitution of equality (2.4) into the equation (2.1) one obtains that the modified 
operator T ( u )  satisfies the generalized reflection equation (GRE) 

1 2  2 2 2 1  1 
R ( i + F ) ( T + F ) =  ( T + F ) ( T + F ) R  

I 1 2 2  2 2  1 
= R(u - U) T(u)  SI(U) &(U) T ( u )  = T ( v )  SI(IJ) T(u)R(u - U) 

1 2 2 1 
= R(u - U) T(u)S1z(u, U) T(u) = T(U)SZl(U, U) T(u)R(u - U). (2.6) 

Here, the matrices 4 2  and SZI are 

S12(& U) = &(U) €3 S Z ( U )  

I 1  1 2 2  2 I I 1 2 2  2 
= I + (To - F)-l F + F ( T o  - (To - ' 9 - 1  F F(T0 - F1-I 

(2.7) 
& ] ( U ,  U) = P ' S I Z ( U ,  U) ' P 

2 2 2 1 1  I 2 2 2 1 1  I 
= I + (To - F)-l F +  F(To - F)-l  + (To - F)-l F F(T0 - F)-1 

where P is the operator of permutation of the two auxiliary spaces P ( A B B )  = (BBA) P [4]. 
are functions of the initial operator To(u) and the additive 

deformation F(u), and obviously depend on dynamical variables. The additive deformation 
The matrices Sl2 and 



Addirive deformations of the R - m r i x  algegbras 6761 

F(u)  was chosen in such a way that the inverse matrix (To - F)-I exists. We can also 
impose some additional constraints on it. For instance, we can demand that the initial 
operator %(U) and the modified operator T(u)  (2.4) obey the FCR (2.1). This condition 
gives the following equation for the additive deformation F ( u )  

1 2  1 2  1 2  2 1  2 I 2 3  
R(F TO + T o F  - F F )  (F To + ToF - F F)R. 

As the second constraints we can take the condition that the modified matrix T(u)  obeys 
the reflection equation (RE) [16,8]. Then we have to demand the equality of the matrices 
SIZ and &I 

(2.9) 

It is an equation for the additive deformation F(u) ,  and hence the modified operator T(u)  
obeys the reflection equation (RE) in standard form 

s ez SI2 = SZl . 

1 2 2 1 
R T(u)S T ( u )  = T(u)S T ( u ) R .  (2.10) 

The integrable systems corresponding to the RE (2.10) can be defined by (2.2) [16,8]. 
As well as for the F a  (2.1) we can consider a similar construction of the additive 

deformation for the initial algebra defined by the generalized reflection equation (ORE). Let 
the operator To obey the GRE 

I 2 2 1 
A T&)B Tofu)  = To(u)C To(u)D (2.1 1) 

and a modified operator T(u)  is introduced by the rule (2.4). After substitution of equality 
(2.4) into equation (2.11) one obtains that the new operator T ( u )  satisfies the following GRE 

1 2 2 1 
A T(u)SB T ( u )  = T ( u ) S ~  T(u)D 

with the matrices S, and SC depending on dynamical variables 

(2.12) 

1 2 
sB(u, U) = sl(u) ' U) ' &(U) 

1 1 1  2 2  2 I 1  1 2 2  2 
= B + (To - F)-' F B + B F(To - F)-' + (To - F)-l F B F(T0 - F)-l 

(2.13) 
2 2 

sc = Sl(U) ' C(u, U). $(U) 

2 2 2  1 1  I 2 2 2 1 1  I 
= C + (To - F)-' F C + C F(T0 - F)-' + (To - F)-' F C F(To - F)-' .  

Similarly to the quadratic algebra defined by the FCR (2.1) we can introduce some natural 
restrictions on the additive deformation F(u) .  

For simplicity, in what follows we mtrict ourselves to the two-dimensional auxiliary 
space and R-matrixs of the XXX and XXZ types only 

(2.14) 
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where the functions a(u),  b(u) and c(u) read as 

q € c  

c(u) = sinhq 

1 
.(U) = 1 + - c(u)  = - 

U U 
b(u) = 1 

a(u) = sinh(u + q )  b(u) = sinhu 

for the XXX and X X Z  R-matrices, respectively. We will use the standard notations for 
the entries of TO 

(2.15) 

The local integrals of motion H(') are obtained as the coefficients of the polynomial f (U) 
(2.2) [4,91 

(2.16) 

The determination of the additive deformation F ( u )  from the conditions (2.8) and (2.9) 
by the given matrix To(u) is a complicated problem which is as difficult as the search for 
the new representations of the algebras corresponding to the FCR (2.1) or the RE (2.10). Due 
to this we will construct some special solutions F(u)  of the equations (29) and (2.8). 

Let the matrix To@) obey either the FCR (2.1) or the RE (2.10) with the R-matrix (2.14). 
When the matrix To(u) satisfies the PE (2.10), we require also its unitarity 

T{'(-u) - To(u + a ) .  

Further simplification arises from the quantum determinant, which is a Casimir operator for 
the algebras connected with the FCR and the RE [4,9]. For the FCR it is defined as 

A&) detTo(u) 

= D(u - !jq)A(u + fq)  - B(u - fq)C(u + i q )  

= A(u - fq)D(u + fq) - C(U - fq)E(u + f q )  

= A(u + fq)D(u - l q )  - B(u + fq)C(u - fq )  

= D(u + fq)A(u - f q )  - C(U + ; ~ ) B ( U  - fq) .  (2.17) 

To fix the additive deformation F(u)  we will use the following idea. We will choose 
additive deformations that only slightly deform the quantum determinant. For example, we 
can by the simplest deformations of the type 

where f ( u )  is a function of the spectral paramter U only. As the monodromy matrix is 

T(u)  =T*(u)"~(U)".T"(u) 
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where the q ( u )  obey the FCR (2.1) and can be deformed by the rule (2.18), the deformation 
(2.18) changes the integrals of motion constructed by (2.16). The quantum determinant of 
the matrix To@) modified by the rule (2.4) with the additive deformation F ( u )  (2.18) now 
reads 

A(u) = Ao(u) - f ( u  + i q ) B ( u  - hq)B-'(u + hq) 

= Ao(u) - f ( u  - iq)B- ' (u  - i q ) B ( u  + $ q )  

= Ao(u) - f ( u  - fq)B(u + i q ) E - ' ( u  - $ q )  

= Ao(u) - f (U + $q)B-'(u + i q ) B ( u  - i q )  (2.19) 

where Ao(u) stands for the quantum determinant of the initial matrix TO@). Because the 
quantum determinant A(u) has to be Casimir operator for the new algebra connected with 
the FCR or the RE, this equation gives a very strong restriction on the functions f ( u )  and 
the entry (TO(U))IZ = B(u).  

We will also use a more complicated deformation F(u)  

(2.20) 

where we will demand that functions B(u),  f (u)  and the combinations ( f + ( u ) [ A ( u ) f D ( u ) ] )  
do not depend on the spectral parameter U. One cannot use the additive deformations (2.18) 
and (2.20) for an R-matrix of the X Y Z  type, because then [B(u) ,  B( IJ ) ]  # 0. A similar 
restriction holds for the linear r-ma& algebras also. 

Note that in the theory of quantum groups, where the FCR and the RE do not depend on 
the spectral parameter U. the condition (2.19) is simplest. 

3. Examples of quadratic R-matrix algebras 

Here we consider a few integrable systems originated by various additive deformations 
F(u) .  

(1) A singular oscillator is connected with the T-matrix 

where braces [, ] stand for anticommutators and p ,  q are the canonically conjugate 
momentum and coordinate of the particle. 

The matrices q , z T ( u )  and u~,zTO(u) (3.1) give rise to the Hamiltonians 

Ho = p 2  f q 2  
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where ai are the Pauli matrices. 
The operators TO@) and T ( u )  (3.1) obey the FCR with the R-matrix of the XXX type 

(2.14) 
(2) A special case of Neumm’s system is defined on the Lie algebra e(3) [12]. Let the 

variables Me, pe ,  (Y = 1,2,3 be generators of the Lie algebra e(3) obeying the commutator 
relations: 

[Ma,  Mpl = -i&pyM, 

[ p a .  ppl = 0 

[ M w ,  ppl = - icapypv 

a.B = 1,2,3. 

with the special values of the Cashfir operators 

2 a - pepe = 1 I = M,p, = 0. 

The initial operator %(U) and the modified operator T(u)  are defined by 

and 

where we use the natural notations M* = M I  f iMz, p +  = p~ & 5 p2, and the braces [ , } 
stand for the anticommutator. 

The Hamiltonians corresponding to T&) and T ( u )  (2.16) read as 

Ho = M: -!-Mi + b2p: 

The initial operator %(U) (3.2) and the modified operator T(u)  correspond to the special 
case of Neumann’s system and obey the FCR (2.1) with the R-matrix of the X X X  type 
(2.14). The matrix T ( u )  was studied in [12]. 

In what follows we will consider the lattice integrable systems connected with the RE 
(2.10). The respective monodromy matrices will be constructed by the rule 

(3.4) 

Here the matrices &(U) and K+ obey the FCR (2.1) and RE (2.10) with one R-matrix. n e r e  
are some isomorphisms among the matrices K-(u)  and K+(u)  1161, for instance 

(3.5) 
t 

K+(u) = K ( - u  - q )  or K+(u)  5 (K?(-U - q) )  
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where t stands for matrix transposition. Because of this we will write the mahix K-(u)  
only. The integrals of motion HLI) are obtained by the rule (2.16), as well as for the FCR 
algebra. 

(3) The To& lanices associated with the Lie algebras of 4, C,, and Dn series [2 ,6] .  
We introduce the initial operator KA(u, p ,  q)  

where p .  q are the canonically conjugate momentum and coordinate of the particle. The 
operator KA(u)  obeys the RE (2.10), where R = R(u - v )  and S = R(u + v )  with the 
R-matrix of the XXX type (2.14). 

According to the rule (2.20) we will consider a modi6ed operator K B C ( U ,  p ,  q )  

KBC(U)  = KA(u) - F ( u )  
(Y 

U 
(3.7) 

O 1.  ( U 

- + B  

exp(-%)[y + kexp(q)  + 28 exp(s)l - - B 
(Y 

=KA+ 

The operators K A  and KBC can be factorized by three simple factors [16]. 
Because the quantum determinant of the initial operator KA(u, p .  q)  is equal to zero 

(A&) = 0) and the initial operator &(U, p ,  q)  obeys unitarity -A(-U - q), we can also 
use a more complicated deformation FD(u)  

(3.8) 

Having this deformation, we obtain a modified operator KD(u .  p ,  q)  [I11 

e% +e-% - 2 

(U - p)e-q + e9(u + p )  
) . (3.9) 

( U  - p)eQ + e-9(u + p )  
KD(u)  = KA - FD = 

The operators K A .  KBC anmd K D  correspond to the Toda lattices associated with the 

The operator K D  can be further generalized by the rule (2.20) 
Lie algebras of A,, E,, (B = y = 0). C, (ct = B = 0) and D. series respectively [ll]. 

The modified operators KBC(U) ,  K D ( u )  and K,D(u) obey the RE (2.10), where R = R(u-u) 
and S = R(u + v )  with the standard R-matrix of the X X X  type (2.14) [16,11]. 

The Hamiltonians for these systems follow by the rule (2.16) from the matrix T(u)  (3.4) 
with the matrices 

The matrices &(U) are constructed from the matrices K A ,  KBC,  K D .  K,D or the unit 
matrix. 
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Among the Hamiltonians there are 

the complete set of Hamiltonians and K mabix, except the matrix K A ,  was considered 
in [Ill.  

(4) The relativistic Toda lattices associa@ with the Lie algebras of Bn, C. and D. 
series [13]. We start with the initial operator K A ( ~ ,  p, q )  

(3.11) 
sinh(u - p) exp(q) exp(2q) 

sinh(u - p) sinh(u t p )  exp(q) sinh(u + p) 
FAA(f0 = ( 

where p ?  2 are the canonically conjugate momentum and coordinate of the particle. The 
operator K ( u )  obeys the RE (2.10), where R = R(u - U) and S = R(u t U) with the 
R-makix of the XXZ type (2.14). 

We can consider an operator EB&, p. q)  modified by the rule (2.20) 

f?BC(u) = EA(u) - F(u)  (3.12) 

1 .  0 OI B +-  sinhu coshu 

exp(-2q)[y +hcoshpexp(q)  t 2psinhpexp(q)l - - - - (  smhu coshu 

- 
B 

= KA t 
a! 

The operators ZA and ZBC can be decomposed into three simpie factors [13]. 
Because the quantum determinant of the initial operator K ( u , p , q )  is equal to zero 

(A&) = 0) and the initial operator is the unitary D ( u )  = -A(-U - q ) ,  we can use a 
more complicate deformation FD(u) (3,8), as well as in the non-relativistic case. This 
deformation gives a modified operator K ( u ,  p ,  q) 

E D ( U )  = zA(u) t FD(U) 

(3.13) 

The operators FA, and ED correspond to the relativistic Toda lattices associated with 
the Lie algebras of AB, B,, ( B  = y = 0). C, (e= ,9 = 0) and Dn series, respectively [13]. 
The operator K D  can not be generalized by therule (2.20), as it was in the non-relativistic 
case, since now the enQ-E(u) of the mahix K D  depends on the spectral parameter U. 

The initial operator K ( u )  and modified operators K B ~ ( u )  obey the RE (2.10), where 
R = R(u - U) and S = R(u + U) with the standard R-matrix of XXZ type (2.14) [13]. 

1 .  sinh(u - p)eq + e-4 sinh(u t p) 

sinh’ u - sinh’ p 

& t e-% - sinh’ u - 2 

sinh(u - p) e-* + eq sinh(u - p) = ( 
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The Hamiltonians for these systems are constructed by the rule (2.16) from the matrix 
T(u) (3.4) with the matrices L(u)  

The matrices &(U) are constructed fiom the matrices EA, f ? ~ ,  2~ or the unit matrix. 
Some Hamiltonians produced by the scheme we have developed read as 

N 

ZA = C e x p ( p j ) [ l +  W q j t t  - q j ) ~  

EBBC = ZA + yexp(-2q1) + [ k c o s h p l  +28sinhpllexp(-ql) 

ED = $A + 2expkn + q d  cosh$(pl + PZ) + exp(%d 

j =1  

the complete set of Hamiltonians is considered in [13]. 
(5) The Heisenberg XXX and XXZ model. Let the L-operators Lk(u) in (3.4) be 

where k is the number of the particle in the chain and SA? are operators representing the 
algebras with the quadratic relations described in [15]. In particular, the operators Sa can 
be realized by the spin operators s, [U], for instance 

so = 1 s, = qs3 s, = qs* 
(3.15) 
, I  

So = cosh $ q  

for the XXX and XXZ chain. This choi? corresponds to the ordinary XXX and XXZ 
spin-f chains [5 ] .  The operators Lt and LX obey the FCR (2.1) with the R-matrix of the 
XXX and XXZ types, respectively. 

S3 = sinh $ q  s3 S, = sinh f q cosh i q  S* 

We will consider the following initial operators for the XXX model 

and for the XXZ model 
slnhu So + cosh U S3)S+ 

2 S- 

(sinh U So + cosh U S&S+ 

sinh’ U Si - cosh’ U $ 

s: 

s: 

S- (sinh U SO - cosh U S3) 
ZAI(u) = (( ‘ 

S+(sinh U SO - cosh U &) 
EAZ(u) = 

(3.16) 

(3.17) 
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which obey the RE (2.10) with the corresponding R-matrices. 

K A  (3.16) and (3.17) by the rule 
The modified operators KBC and ~ B C  are constructed from the operators Lk (3.14) and 

KBC = ~ K A I  + ~ K A Z  + y[2sinhu Sz(u) - A @ ) [ ]  

KBC = a K ~ 1  + 
a, @, y E W A(u) debl (u)  A(u) debZ(u). 

A A + y[2sinh U Soz(u) - L ( u ) I ]  (3.18) 

Here Z isthe unit matrix, A(u) and x ( u )  are the quantum determinants of the operators 
L(u)  and L(u)  respectively. 

The operators K A I ,  K A Z  and  EA^, ~ A Z ,  K̂ Bc can be decomposed into three simple 
factors [16,3]. As well as the Toda systems we can also construct the more complicated 
operators KD and ??D, which are not factorized by simple factors. 

Let the deformation read as 

where the operators (S*)-lAare replaced by the operatorx S,, respectively. Then the 
modified operators KO and K D  are 

where S+ = SI zk iSLand A(u) is a quantum detemjnant of the %erator Z ( u )  (3.14). The 
operators KBC(U) ,  KBC(U) and shifted operators KD(U - fq) ,  KD(U - 47) obey the RE 
(2.10) with R = R(u - U) and SA= R(u + U - a), where R is the corresponding R-matrix 
(2.14). The operators KBC and KBC were considered in [16,3] and the operator KD was 
inuoduced in [l l] .  

Following [ 16.31 we present some Hamiltonians in terms of the spin opergors2 (3.15). 
They are constructed by the d e  (3.4) with the matrices KA, K B C ,  KD and K A .  KBC, KD. 
and for an open chain [16,3] read as 

k=l 
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In 1161 operators like Ksc were introduced for an XYZ magnet chain and for the non- 
linear SchrMinger equation. For these systems operators similar to KD have not yet been 
considered. 

We do not know of examples of the quadratic R-matrix algebras when one modifies the 
initial algebra and S matrices depending on dynamical variables. Some interesting examples 
of such deformations for the linear r-matrix algebras will be considered in the next two 
sections. 

4. Deformations of the linear T-matrix algebras 

In this section we consider three Lie-Poisson algebras connected with different R-ma& 
algebras [4,5,17-191. The Lie-Poisson brackets 

I 1  I 2 
[LO.), L@)J = [ r ( L  P), U A )  +UP)] (4.1) 

is a linear classical limit of the FCR (2.1) by the R(u) = I + iqr(u) + O(q2) the 
T ( u )  = I + iqL(u) + O(q2), where the parameter q is a Planck constant I, I 4 -iq(, 1. 
By the substitution S(u)  = 1 + iqs(u) + O(q2) the bracket 

1 2  1 2 I 2 
WJ, UP)] = [r& P) ,  U N  + W ) I  + [ s ( L  P) ,  L(A) - UP)] (4.2) 

is related to the RE (2.10). The linear limit of the GRE (2.1 I) is 

I 2  1 2 1 2 
M A ) ,  L ( I L ) ~  = IL), W.) + W ) l  +Is@. ILL U A )  - UP)] 

(4.3) 

(4.4) a - d  b - c  t =  - w =  - b + c  s =  - a + d  r =  - 
2 2 2 2 

and [, ] and ( , ]+ stand for a matrix commutator and anticommutator respectively. We also 

use the standard notations L(h) = L(h)  8 I ,  L ( p )  = I8 L ( N )  introduced for the quadratic 
algebras. The brackets (4.2). (4.3) define the Lie-Poisson algebras if the matrices ? ( I ) ,  
s(h), t(h) and w(A) satisfy some modified Yang-Baxter equations [19,18]. For simplicity 
we restrict ourselves to the r-matrix algebra (4.1) and the rs-matrix algebra (4.2) in the 
two-dimensional auxiliary space only. 

Let the 'vacuum' operator LO 

1 2 

obeys the linear r-matrix algebra (4.1) with the r-matrix 

(4.5) 

k=l 
(4.6) 
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where uk(A) are functions of a spectral parameter only and uk are the Pauli matrices. 
We will require that the r-matrix obeys the classical Yang-Baxter equation (cme) and is 
antisymmetric, r(A) = +-A) [4]. 

Let us introduce a deformation of the 'vacuum' Lo@) operator (4.5) of the form 

L(A) = (4.7) 

where F(b,X)  is a not yet defined function of the matrix entry b(A) and the spectral 
parameter A. 

Theorem I .  The L(A) operator (4.7) satisfies the linear rs-matrix algebra (4.2). if w, = 
wz w and the function F(b, A) has the form 

F(b, A) = - f (h)b-'(A) 

where f (A) is a function of the spectral parameter A only. The corresponding matrix s ( A ,  p )  
is given by 

where u(A, p) is 

E - WO - p )  (f(A)b-%) - f (p )b -2 (p ) ) .  (4.8) 

The proof is based on a direct but cumbersome computation, and is omitted. 
We will use r-matrix XXX and XXZ types only [4]. These r-matrices are 

(4.9) 

(4.10) r(A) = - (9 8 u1+ g 8 g +cosh A . q  8 us) 

As for the quadratic algebras, one can not use the deformation (4.7) for the linear r-matrix 
of the XYZ type, because wl # w2. 

In this section we use the notation d(A) for the determinant of the L-operator, because 
the quantum determinant A(u) is a Casimir operator for the quadratic R-matrix algebras, 
but for the linear r-matrix algebras the determinant d(A)  is a generating function of the 
integrals of motion. It follows from the algebra (4.2) that the function d(A) = det L(A) can 
be taken as a generating function of the integrals of motion, since 

rl 
smhA 

for the XXZ case. 

kW), d(p)J = 0 A. p E C. (4.11) 

The determinant of the modified operator L(A) is d(A) = &(A) - f(A). We deform our 
system in such a way that new integrals of the motion differ from the old ones by some 
constants 

I m w  = Iold + fk fx E C. 
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Let the entries of the matrix L&) be defined as the absolutely convergent Laurent 
series for the XXX model, or the Fourier series for the XXZ model of the parameter h or 
their terms 

a(A) = Z a k k  
k 

a@) = ax exp(kA) 
k 

We can introduce a new deformation c 
form 

for the XXX model 

for the XXZ model. 

e 'vacuum' LO@) operator (4.5). which has ~ ~ i e  

(4.12) 

where FN(b, A) is a function of the spectral parameter h and the entry b(h),  and reads 

FN@, A) = [fN(h)b-'(A)l+ (4.13) 

Here the brackets [ I+ denote the standard (or Taylor) projection 

(4.14) 

(4.15) 

for r-matrices of the XXX and XXZ types, respectively. 
Note that we can also use a more general projection [ ] M N  (Laurent projection) 

(4.16) 

Corollary I. The .?"A) operator satisfies the linear rs-matrix algebra (4.2). if W I  = wz 
w,  and the matrix S N ( ~ ,  p) is given by 

The function UN@, p )  is defined by 
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of 

The proof is based on a straightforward calculation. 
Note that now d(A) -a'&)+bF~ # &(A)-f(A), and therefore the integrals of motion 

Let us rewrite equations (4.1) and (4.2) in the form [l]  
the deformed system are functionally different from their undeformed counterparts. 

1 2 1 2 
I(L(A))?(L(p)))  = h z ( L  p),  L(A)I + [rzl(h, P ) ,  (4.18) 

where r&., p )  - PrIz(p. A)P and the operator P is a standard permutation of the auxiliary 
spaces [l]. The matrices rI2 = rz, = r stand for the r-matrix algebra (4.1), and dl.2 = r As 
stands for the rs-matrix algebras (4.2). We can also consider the Poisson structure (4.18) 
for the powers of the L-operator 

As an immediate consequence of (4.18) and (4.19) we arrive at 

(4.19) 

1 2 
[ t r l ( L " ) , t r ~ ( L ~ ) J  = O  n , m  = 1.2, . . .  . 

and the integrals of the motion are 

Hn(A)=tr,(LJ) j = l . 2 ,  n = l . 2  ..... 
Note that 

d(A)  =detL(A) = $ t r (L2)  = i H z ( A ) .  

The Lax representation corresponding to the Hamiltonian H, (4.21) (see the work [l])  
reads 

(4.20) 

(4.21) 

L i p )  = IN&.). U p ) ]  = [M&, A), (4.22) 

where the matrix M,(p ,  A) is determined by 

I 
M , ( ~ , A )  = ntrI(L"-'rzl) 

To prove this we should take into account (4.19) 

n = 1 , 2 , .  . . . 

1 2  I 2 
~ - ( H . , L J = ~ ~ ~ ~ L ~ , L J = ~ ~ ~ [ ~ I ( ~ ) , L I + ~ ~ , [ ~ : ; ) , L I .  

Here the first term is zero as trace over the first space of the commutator and therefore 
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where cyclic permutation under the trace operation is used. 
The Hamiltonians H.(h) (4.21) are functions of a spectral parameter. In order to 

infroduce the Hamiltonian H ,  which does not depend on a spectral parameter, one needs a 
projection 

I 
H = ~ @ i [ H z ( h ) l  = @i[d(h)] = $@i[tri LZ(h)]  (4.23) 

where @A is a linear function on the spectral space, for instance 

(4.24) 

With the help of the algebra (4.2) and equations (4.18H4.23) we construct a Lax 
representation for the L-operators (4.5). (4.7) with the Hamiltonian (4.23) 

(4.26) 

where the natural notation MO is used for the second matrix in the Lax representation with 
the 'vacuum' operator LO. 

As an example we consider the special case of 'vacuum' LO operators and functionals 
@A, which results in 

(4.27) 

It is a rather strong restriction on the LO operator (4.5) and the Hamiltonian (4.23). As an 
immediate consequence of the Lax representation (4.25) with the matrix MO (4.27) we can 
rewrite the operator LO in the form 

(4.28) 

where HO is a Hamiltonian corresponding to LO. The equations of motion are constructed 
from the equation (d(h), Zf ]  = 0. They follow from the formula (4.28) and are consistent 
with the Lax representation (4.25) 

azb = b,,, = 0. (4.29) 

For the fixed operator Lo@) and projector @A we can consider an L operator modified 
by the rule (4.7). In this case the matrix M(p) in the Lax representation with the modified 
.L(p)  operator (4.7) is constructed by the rule (4.25). where r*,(A, p )  = r --s, which gives 

(4.30) 
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Here we have imposed the property on the linear functional that defines a function u(p) 

%[wr (-f(AW-'(V + 4%) + (f(W-%) - f(~)b-'(~))b@))] 

= f ( d b - 2 ( d  = ~(p). 

One can apply a deformation (4.7) to the operator Lo (4.28) that gives rise to an operator 

where H is a corresponding Hamiltonian. The equation of motion now reads 

(4.32) 

where BI is the Hamiltonian operator of the first Hamiltonian structure for the coupled mv 
equation. 

Where u(A) is a rational function of the spectral paramter this equation has been 
investigated in many papers. Some of its solutions with r-matrices of the X X X  type 
are considered from the viewpoint of the rs-LiePoisson structure in the works [7,14]. 

1 3  (& + ua, + iu,)b = Bl[u]b = 0 

5. Examples of the rs-matrix algebra for integrable systems 

A special form of the 'vacuum' LO operator (4.5) has been considered in [7,14]. The 
operator LO was taken in the form (4.28). where the meromorphic function b(A) 

depends only on the coordinates of particles, xj  being the coordinate of the jth particle. 
The LEI operators defined by the rule (4.7), (4.31) are related to the restricted flows for 
KdV 1141 and to the motion on real Riemannian spaces of constant curvature [7]. Among 
the dynamical models studied in 17,141 there is a Henon-Heiles system of type (ii). Its 
Hamiltonian (A, B,  E are constant) 

H = !j(p: + p:)  + + ( A x Z  + B y Z )  + x2y  + cy3 

has been extensively studied both in non-integrable and integrable regimes. The integrability 
holds only for the following three sets of parameters 

& = l  (i) A = B  3 

(ii) & = 2  

(iii) 16A = B E = 3 '  

In this section we consider a class of integrable systems with one general property,, 
namely, each system from this class is linearized on the Jacobi variety r = W j ,  where rj 
are hyper-elliptic curves [Zl]. The Henon-Heiles system in cases (i) and (iii) belong to this 
class. 
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Let us write an initial system in the variables (pj, q j ) .  j = 1. . . . , n,  where ( p j ,  q k ]  = 
d,k. We will assume that there exists a canonical transformation 

Uk u k ( q l , .  . . , Q n ;  Pl,  . . . , Pn) Uk = v k ( q l , .  . . , 4 n ;  Pi. . . . , P n )  k = 1,. . . , II (5.2) 

such that in the new variables ( u k , U k )  ( ( u j ,  uw} = djk) equations of motion are separated 
and have the form 

U: = Gk(uk) (5.3) 

G&) = Cgi"!lj. (5.4) 

L(A) = @L$)(A, Uk,  U t )  

where the functions G k  are given by the Laurent sets 

We associated to such a system the L-matrix in a special form 

(5.5) 

that acts in the extended auxiliary space 

(5.6) (k )  uaux = @ k v m  

and the matrices L$)(A, q, U k )  are equal to 

There L $ ) ( A , v ~ , u ~ )  matrices are the deformations of the special 'vacuum' matrices 
LO@, Uk,  uk) 

which obey the standard h e a r  r-matrix algebra (4.1) with the r-matrix of the XXX type [4]. 
Thus we associate to our system L-matrix, which has a block structure, each block L$) 

obeying an rs-algebra with a common r-matrix and different matrices Sk constructed by the 
rule (4.17). The entries C N ( A ,  U t )  of the matrices L,v(A, U k ,  ut) (5.7) are polynomials of 
two variables 1 and U k  

Remember that the brackets [ I+ denote a Taylor projection by the rule (4.15). The 
determinants dN (k) of the matrices L$)(A, u t ,  u k )  (5.7) are equal to 



6776 A V Tsiganov 

and the functions Gk (5.3) are defined by gj = hk (5.4). 
A generating function of the integrals of motion can be taken as a determinant of the 

L-matrix (5.5) d(A)  = det L(A) = n;=, dF).  Hamiltonians for these systems can be defined 
by 

(5.1 1) 

and their explicit form to withii a constant factor reads 

= T") + pv$' /3 E w (5.12) 

where T") is a kinetic energy and V$) is a potential. If higher coefficients f$) of the 
polynomialos f (k ) (A)  are the same for all particles f$ = ff' for all k, j ,  then the 
Hamiltonians (5.11) can be rewritten as 

Hi = Z d d V I  . 
A d  

For the Laurent projection [ ]MN (4.16) the Hamiltonians (5.12) are equal to 

(5.13) 

(5.14) 

The operator LO (5.8) and the modified operator LN (5.7) have a hidden internal 
structure [lo] 

(5.15) 

where the variables q and Ut can be considered as linear combinations of some canonical 
variables p y ) ,  qjk' j = 1, , . . , K. If we consider n-particle systems only and require that 
the Hamiltonian (5.12) has a canonical form with a kinetic energy 

k=l 

then all the internal structure (5.15) is reduced to the Jacobi transformations for the n 
particles. 
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We illustrate this scheme by the simplest cases of the two- and three-particle systems 
under the Jacobi transformations. For two-particle systems, after the transformation 
U I  = 91 + q 2 ,  uz = 41 + q 2 ,  the uniform potentials V t )  of the degrees j = 1,2, . . . , N read 

(2) - + v1 - el 41 + e:qz 

(5.16) 

where e; = (A’ * ft’) and Cj are the binomial coefficients. 

such a way that the Jacobi transformations (5.2) have the simplest form 

U I  = (41 - 2qz + 43) U 3  = (41 + 42 + 43) 

with fl’ = 6, ff) = 18, ff) = 3. The first uniform potentials Vf’ of the degree 
j =  1,2, ..., N are 

For the three-particle systems with equal masses we can choose the coefficients ff’ in 

= -%?I - 4 3 )  

VI @) - - (fp - 3fY’ + fin))41 + (f?) - 2f:“)q2 + (fy + 3 p  + f 3 4 3  

where the coefficients fju are expressed through 
For the two-particle systems the Hamiltonian Hr) (5.12),(5.16) coincides with the 

Hamiltonian of the Henon-Heiles system of type (i) and the corresponding L operator (5.5) 
has been considered in [20]. 

The Henon-Heiles system of type (iii) can be embedded in the scheme developed after 
a more complicated canonical transformation. 

Proposition I .  The change of the canonical variables I J ~ ,  uk, k = 1,2, into the variables 
x ,  px and y ,  p y  under the rule 

and the binomial coefficients Cj. 

(5.18) 
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where ak(A) and bk(l)  are the entries OF the matrices L M ( l ,  uk, ut )  k = 1,2 (5.7). is a 
canonical transformation. 

Proof. We fix a variable xz and the Hamiltonian H = (dl + dz)(A = 0) by (5.13). Then 
a corresponding momentum px = {H, x }  follows from the rs-algebra (4.2) 

2xPz = { H , x 2 1  

where we have used the explicit form of the LN operators (5.7) and the technique developed 
by Sklyanin [17]. The variable y is fixed by the condition ( x ,  y }  = 0 and a corresponding 
momentum py = {H,y} is calculated from the rs-algebra and the Hamilton-Jacobi 
equations. 

Here we have used the following relations 

1 
( b @ ) , 4 f i ) J  = - (b(f i )  - W)) @-A 

L 
{W), ffi)} = - ( 4 4  - 4.)) = 0 

P - A  

b(fi)l = 0 

which are determined by the r-matrix only and a relation {&(A), dj( f i ) )  = 0, which is given 
the rs-algebra (4.2) with stmatrices (4.17). 

To describe the Henon-Heiles system of type (iii) let us apply this transformation to 
the L3(A, uk, uk) matrices (5.7) with the same third power non-linearity, as was done in 
the case (i). After this transformation we obtained the I operator (5.5). which has been 
investigated in I201 for the special choice of the function h(A) 

f3(A) = - 1(A3 6 - ;AAz - qA*A). (5.19) 

We can not prove that after the transformation (5.18) we will arrive at the Hamiltonians 
(5.12) in the natural form H = T + V, without some additional assumptions, for instance 
some constraints on the functions j$)(~). 

For the two-particle system the transformation (5.2) is a special case of a wide class 
of canonical transformation. For instance. we can use the canonical transformation of the 
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variables U, pu and U ,  p. to the variables x ,  p x  and y.  py by the rule 

y = 2 ( 8 - l ) y u - ( p )  P" 
(5.20) 

This transformation extends the transformation (5.18) to arbitrary real constants (Y and 8 .  
The complete classification of the twc- and three-particle systems described in this 

section and their identification with the known systems will be studied elsewhere. For the 
two-particle systems we can consider potentials with higher powers of nonlinearity N for 
the Taylor (4.15) and Laurent (4.16) projections by the transformations (5.18) and (5.20). 

For the three-particle systems we can generalize the operator L (5.5) and consider 
another ansarz for it, which has the block in the form (5.1) [7] 

L(V = L12(U 8 L3(V (5.21) 

where 

We can also consider the extension of the canonical transformations (5.18) and (5.20) to 
this case. 

6. Conclusions 

The next problem is to consider the general form of the linear r-matrix algebra (4.4) with 
four matrices r, s, t ,  w and the deformations ofthe 'vacuum' operators LO (4.7), where F(h) 
is a function of a spectral parameter A and coordinates x y ,  but is not a function on entry 
b(A). It will be interesting also to examine the L-operator for Calogero systems 

which satisfy the linear r-matrix algebra (4.1) with r-matrix of XXX type (4.9). 
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